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In current data networks there are many applications that support multi <'.1\ h 

as conferencing, online gaming, and video streaming. Among these are those applications that require reliable mutlicast, such 
as reliable bulk data transfer applications that impose strict reliability and a received file is considered invalid even if one bit 
is received incorrectly . . 

Reliability in multicast networks is achieved through Forward Error Correction(FEC), Automatic Repeat Requests(ARQ), 
and other feedback mechanisms. SMART [1] is a novel NAK-based feedback protocol, that asymptotically reduces the total 
transmission time of a file transfer to that of an omniscient transmitter that knows the state of every receiver and link at all 
times. SMARr provides a mechanism for a potentially large set of receivers to send their feedback in a single time slot and 
uses a predictive model to choose the optimal feedback time. This combination allows a significant reduction of unnecessary 
feedback thus resulting in shorter total transmission times. 

In this paper we apply the information theoretic concept of Method of Types to characterize optimal throughput of the 
erasure broadcast channel. This concept is then utilized to develop a computationally efficient expression that gives the optimal 
feedback time in a multicast setting whose transmitter uses network coding. We then generalize this approach to address a 
multicast network with heterogeneous links of different rate, and different packet erasure probability. This method can greatly 
help in speeding the delivery time over heterogeneous networks. 

The remainder of the paper is organized as follows: In Section II, we explain Method of Types and the framework through 
which it can be applied to various setups. Section III, discusses a broadcast channel with homogeneous links. Section IV, 
extends the analysis to a network with two heterogeneous links. Section V, generalizes our approach to a broadcast network 
with many heterogeneous links. finally, in Section VI -we compare the performance of SMART to two other transmission 
strategies and show its robust performance. 

II. GENERAL THEORY AND METHOD OF TYPES 

Consider an n x t matrix X whose (i,j)th element, Xi,J• is a Bernoulli random variable with parameter P, where 
P = Pr{Xi,j = 1, V(i,j)}. Let us denote the ith row of X by the vector [Xt]i which is a sequence oft i.i.d. Bernoulli 
random variables with the same parameter P . In other words, [Xt]i = Xi,lXi,2 ••• Xi,t· We associate a random variable Si(t) 
with the ith row of this matrix that represents the number of 1 's in that row~ The notation S,(t) emphasizes the dependence 
of this random variable on the length t of each sequence. Thus, S,(t) = E~=l X i,j. 

We are interested in statistical behavior of the collection of all [Xt], E X and will use the notion of Types introduced by [2] 
to classify them. A given sequence [Xt]i is said to be of type Q, if it has an empirical distribution 8'1') = Q. Note that there 
are exactly t + 1 possible types, each corresponding to a different ratio of 1 's in the sequence. Let us calculate the probability 

t This work is sponsored by the Department of Defense under Air Force Contract FA8721-05-C-0002. Opinions, interpretations, r«:olllJJiendations, and 
conclusions are those of the authors and are not necessarily endorsed by the United States Government. Specifically, this work. was supported by Information 
Systems of ASD(R&E) 
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of [Xt]i with type Q: 

Pr { [XtL: S;?) = Q} = Pr {X.,3 = 1}8'(t) Pr {X;,3 = O}t-s,(t) 

ptQ(1- P)t(l-Q) (1) 

= exp [t (Qln (P) + (1 - Q) ln (1 - P))] (2) 

exp [t ( Q ln ( Q) + (1 - Q) ln (1 - Q)+ Q ln ( ~) + (1 - Q) ln G = ~))] 
= exp [-t (Hb(Q) + D (QIIP))] (3) 

where Hb(·) represents the binary entropy function measured in nats, and D (·II·) is the Kullback-Leibler (KL) divergence 
between two Bernoulli distributions. The following symmetries hold for H b ( ·) and D (·II·) if the input distributions are binary: 

Hb(Q) = Hb(1- Q) 

D (QIIP) = D ((1- Q)ii(1- P)) 

(4) 

(5) 

Given that (3) can efficiently calculate the probability of a sequence with a particular empirical distribution, we use it to 
calculate the probability that certain empirical distributions are present/missing in X. Let us define two new random variables 
Smin(t, n, P) =min; S;(t) and Smax(t, n, P) =max; S;(t) to denote minimum/maximum number of 1 's among the rows of 
X. Our initial functions of interest are the distributions of Smin and Smax· Let /3min(t,n,i,P) be the probability that the 
minimum number of 1 's is greater or equal to i for all sequences in X. Thus: 

/3min(t, n, i, P) - Pr {Smin(t, n, P) ::>: ijX} (6) 

- [Pr{[xtLEX,Q E [f, 1J}r (7) 

- [t G) exp [ -t ( H, (f) + D (fliP)) l r (8) 

Similarly, let !3max(t, n, i, P) be the probability that the maximum number of 1 'sis less than or equal to i for all sequences 
in X: 

f3max(t, n, i, P) '"' Pr {Smax(t, n, P) :::; ijX} 

= [Pr{[xtJ.EX,QE [o. fJ }r 
[t, G)_ ( _, ( H, m +D (fliP))) r 

(9) 

(10) 

(11) 

Note that /3min and !3max are cumulative probabilities and we can get the Probability Mass Functions (pmt) of Smin and 
Smax from them. Let amin(t, n, i, P) be the probability that Smin(t, n, P) = i then: 

amin(t,n,i,P) = f3min(t,n,i,P)- /3min(t,n, (i + 1),P) 

Similarly, let amax(t, n, i, P) be the probability that Smax(t, n, P) = i, then: 

Notice that: 

amax(t, n, i, P) = f3ma.x(t, n, i, P)- f3ma.x(t, n, (i -1), P) 

f3min(t,n,O,P) - 1 

f3ma.x(t,n,t,P) - 1 

.Bmin(t, n, t, P) = amin(t, n, t, P) = (1 - P)nt 

f3max (t, n, 0, P) ,. amax(t, n, 0, P) = (P)nt 

f3min(t, n,j, P) = 0 

f3max(t,n,j,P) = 0 

Vj > t 
Vj < 0 

(12) 

(13) 

(14) 

(15) 

(16) 

(17) 

As a result we can generate the desired profs by first calculating the .B functions and then using the the recursive equations 
(12) and (13) to get the profs. 

Most importantly we are interested in calculating the expected value of Smin and Smax whose profs for a fixed t are (12) 
and (13) respectively. In other words, we want to know the expected minimum/maximum number of ones among the rows of 
X, and as we will show shortly we do not need the a functions to make this calculation. 
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For a non-negative discrete random variable X, we can find the expected value as: 

E[X] - 100 

Pr{X > x}dx 

=- 100 

Pr {X ~ x}dx 

where the last equality holds because Pr {X ~ x} and Pr {X > x} are the same except at a finite set of discontinuities , 
and does not affect the integral. Since Smin and Smax are non-negative, we have: 

E [Smin(t, n, P)] = 100 

f3min(t, n, 0, P)d() (18) 

t 

= Lf3min(t,n, i,P) (19) 
i=l 

E [Smax(t , n , P)] = 100 

(1 - f3max(t, n, 0, P)) dO (20) 

t 

= L {1 - /3m=:{t,n,i,P)) (21) 
i = l 

where we have used (16) and (17) to get (19) and (21). 

Another parameter of interest is the distribution of the required length of the sequences , t, that ensures a minimum number 
of ones in each of the n rows of X. In other words, given that we require a minimum of k ones in each of the n sequences, 
what is the probability that this constraint is met with strings of length t. To state this more carefully, note that we are interested 
in the probability that the minimum number of ones among the n sequences of length t is greater than or equal to k (rather 
than only equal to). As an example, consider the difference !3m&n(t + 1, n, k, P)- f3min(t , n, k, P). This difference shows the 
probabilistic gain of increasing the length of each sequence by one more bit. After some thought it becomes clear that for a 
fixed (n,k,P), the probability of interest is exactly f3mtn(t, n, k, P). Using the non-negativity oft we can find the expected 
(minimum) required length, E[tmin], for a given set of constraints (n, k,P): 

E [tmin I (n, k, P )] = 100 

(1- f3m&n(O, n, k, P)) d() 

00 

= k + L 1 - f3min { i, n , k, P) (22) 
i =k 

III . NETWORKS WITH HOMOGENEOUS LINKS 

Having developed the necessary tools, let us revisit the problem of transmitting k packets to a set N of receivers1 over a 
broadcast erasure channel with erasure probability Pt · Assume that erasures occur independently across time and users, and let 
us use Os to denote erasures and Is to represent successful receptions at a receiver. This representation allows us to record the 
complete outcome of the transmissions up to and including timet in ann x t matrix X where the i th row [Xt], represents the 
transmission outcomes at the ith receiver. Let us define 7(t) to be the probability that every receiver has finished the download 
by time t, this is the probability that the minimum number of 1 's in each row of X is greater than or equal to k. From (8) we 
have: 

'Y{t) ~ Pr {Smin ~ kiX} = f3min(t, n , k, {1-Pt)) (23) 

Fig. 1 depicts 'Y(t) for a range of erasure probabilities. Notice that 7(t) undergoes a sharp phase transition especially for 
smaller erasure probabilities. Our goal is to choose the time of the initial feedback when 'Y(t) is sufficiently large such that 
the total download time is minimized. Let t 1 be the time of the initial feedback, and t 2 (t 1) be the number of retransmissions 
needed (after t1) to complete the download. Notice that the number of retransmissions is strongly dependent on the time of 
the initial feedback justifying the notation. 

Note that with SMART, we can obtain the feedback from all receivers in a single time slot. Thus, the total transmission time 
Ttot can be written as Ttot = (t1 + 1) + (t2{t1 ) + 1), where the two ones account for the number of slots allocated for feedback 

1We will use nand n 1 to mer to the cardinality of the sets Nand N 1 
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in each round. We are interested in choosing t 1 to minimize the expected total transmission time. Note that (1- -y(t1)) is the 
probability that retransmissions are needed after the initial feedback and: 

E[Ttotltt] - (tt+1)+(1 - -y(tt))(E[tz(h)\ tt] +l) 

t1 = argmin E [Ttotlt] 
t 

(24) 

(25) 

We can accurately boWld E [t2 (t1)1t1] by considering two simple scenarios that will follow shortly. Recall that Smin denotes 
the minimum number of 1 's among the rows of X, in other words Smin is the feedback received from the receiver that has 
encoWitered the highest number of erasures. Given that at t1. Smin = i the transmitter will use a predetennined strategy to 
calculate and transmit t2 (t1) packets to complete the download: 

k- 1 

E [t2(t1)J t1] = L Pr (Sm i.n = iJt1) E [t2(t1)J tt, Smin = i] 
i = D 

k-1 

L O'min(tt, n, i, (1- P1)) E [t2(tt)l tt, Smin - i] 
i=O 

(26) 

where the limits of the sum are chosen to only consider the cases where t2(t1) is non-zero. We can lower bound (26) by 
assuming that there is only 1 node that has received this minimum number of packets, and upper bound it by assuming that 
all n r~ivers have received the same minimum number of packets, using (22) we have: 

E [t2(tt)J t1, Sm;.n - i] > E [tminJl, i, (1-Pt)] 
i 

1 - p1 
E [t2(t1)J tt, Smin = i] ~ E [tminJn, i, (1 - pt)] 

(27) 

(28) 

The initial work on SMAirr [1], suggested a scheme in which the transmitter scales up the number of packets requested 
by the worst receiver by a factor of (1- p 1) which is simply the lower boWld shown above. A tighter lower bound can be 
expressed as: 

. Ln { that exactly j nodes } . . 
E [t2(t1)J tt,Smin = l] > Pr ha · d - k ts E [tminiJ,'t, (1- P1)] - ve rrusse -t pac e 

j=1 

IV. NETWORKS WITH TWO HETEROGENEOUS LINKS 

In this section, we consider the transmission of a file of k packets from a single source to a set N of receivers. The source 
transmits over two links of rates R1 and R2 packets per unit time. The links have packet erasure probabilities P1 and P2 
respectively. We assume that a subset N1 of the receiving nodes can only receive over the first link and the remaining nodes 
in M can receive over both links. The goal of the transmitter is to send a file of k packets to all receivers in the shortest 
possible time using SMART. Such network topologies arise frequently when a set of mobile devices with access to multiple 
links move through a region with non-uniform coverage. As an example, consider current generation of smart phones that 
can simultaneously communicate over Wi-Fi and 3G, each of which has a different rate and packet erasure probability. A 
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multicast session with such devices may include phones whose Wi-Fi or 3G connection is disrupted, leaving them with only 
one communication channel. 

We pro~se a scheme where the base station transmits independent coded packets on each link and as a result any successful 
reception will provide a new degree of freedom at the receivers. This coding stnttegy transforms the problem to a scenario 
where the base station transmits packets at a rate R1 to n1 nodes, while transmitting at a rate of R1 + R2 to n - nt nodes, 
and as before we are interested in finding a feedback time to minimize the expected total download time. 

Let us consider the nodes that have access to both links. The successful transmissions to node i E JJl can be modeled as 
a binary sequence [Xt(Rt+R2>t. This sequence represent a Bernoulli arrival process formed by merging2 two independent 
Bernoulli processes 1xtR1 ]; and [ xtR2];, corresponding to the transmissions on different links. We can define a new parameter 
p3 to denote the probability that the jth element of the combined sequence is a 0: 

P3 - Pr {X;,; = Oli EM} 
- Pr {X. · E [xtRt] .} Pr {X· · = Oli E M1 X. · E [xtRt] .} t ,J • .,, , t,J ' 

+ Pr { x ,,i E [xtR2
].} Pr { X;,i = Oli EM, X;,J E [xtR2

];} 

RtPt +R2P2 
R1+R2 

(29) 

The expressions above suggest that we can treat the nodes that have access to both links similarly to the nodes in N1 if we 
define a new rate R3 = R 1 + R 2 with packet erasure probability p3 as defined in (29). Using binary matrices to represent the 
outcome of transmissions, we notice that because of the variable rates experienced by different users we have to use differently 
sized matrices. Let XN1 and XN

1 
denote the transmission matrices for the nodes in N 1 , and the nodes in it's complement M 

respectively. 

As before, let us use 'Y(t) to denote the probability that every receiver has completed the download by time t. Recall that 
for each transmission matrix we can calculate Smin =min; S;(t), and download is completed if Smt.n is greater that or equal 
to k for both matrices. Thus we have: 

7(t) = Pr{Smin?: kiXNJPr{Smin?: kiXN1} 
= f3min (tR1, n1, k , (1- Pl)) f3min (tRa, (n - nt), k, (1- Pa)) 

Following the rational of Section III and using above definition of 'Y(t), we can get the optimal feedback time t 1: 

t1 = argmin E [Ttot lt] 
t 

(30) 

(31) 

(32) 

Let us discuss the behavior of 7(t ) in (30) before considering any bounds for E [t2(tt)l t1] . Recall that f3min is a CDF that 
transitions sharply from 0 to 1. The probability that every node has completed the downJoad by timet, 7(t), is the product of 
two such f3min functions and will resemble the f3min that has a delayed phase transition period. An extreme example of this 
notion is the product of two step functions and we can clearly see that the product is equal to the delayed step function. In 
other words, the download completion time is most severely affected by the set of users whose f3min function is delayed. If 
we use this "worst" f3m;,n function as an approximation to 'Y(t) we can use equations (26-28) to find the expected completion 
time. Fig. 2 illustrates the accuracy of this approximation. 

The exact expression for the expected minimum number of dofs received via two heterogeneous links by time t is shown 
below and can be used to estimate the total transmission time. 

E [Smin(t, n, P)] = fooo f3min(tRt, n1, 0, {1- Pt))f3min(tRa, (n- n1), 8, (1- P3))d8 

t 

Lf3msn(tR1, n1. i, (1- Pt))f3min(tRa, (n-:- n1), i , (1 - P3)) (33) 
i=l 

The plots in Fig. 3, show that even a single node in N1 drastically affects the total transmission time. Also notice that the 
erasure probability of the second link does not affect the overall performance of the system. 

2The merging that we are discussing in this section is slightly different from the familiar Bernoulli merging processes taught in elementary courses of 
stochastic processes. Traditionally, we consider an arrival in the merged process if there was an arrival in at least one of the original processes. In other 
words, if there is an arrival at time i of both incoming processes we would only register one of them in the merged process and the number of arrivals was 
not conserved. In our current definition we avoid this problem by assigning the would-be discarded arrival at random among time indices that do not have an 
arrival. 
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V. GENERAL SINGLE-HOP NETWORKS 

Consider a broadcast network with a transmitter and a· set N of receivers, the transmitter has a file of k packets to transmit 
to everyone. If the receivers can be classified into M subgroups, {N1,N2, ... ,NM }, based on their ability to access different 
links, we can define a new packet erasure probability {Pt , P2, ... , p M} for each group using (29), and an independent rate 
{R1, R2 , ... , RM }. We can then use the notions developed in the previous section to write out the expression for the -y(t), the 
probability that every node has received every packet at time t: 

M 

'Y(t) = II f3min(tRi, ni, k, (1- Pi)) (34) 
i=l 

As before, we can approximate -y(t) by the f3min function. that is delayed the most, and other arguments will follow. 

VI. COMPARISON TO OTHER TRANSMISSION STRATEGIES 

In this section we discuss two other transmission strategies that are often employed in heterogeneous networks but are 
inferior to SMART as was discussed here. 

Consider the heterogeneous network discussed in Section IV with R 1 = R 2 = 1 and n 1 :;::: 0. These parameters express a 
scenario where a transmitter uses two independent links of the same rate (but different packet erasure probability) to transmit 
a file of k packets ton nodes. A somewhat rational strategy is to divide the file according to the throughput of each link and 
transmit each portion independently. In other words, the first link will be assigned 2_~~~P2 } k packets and the second link will 
have the remaining 2_(~~p2) k packets, and each link will only code across the packets assigned to it. As a result, a given 
receiver will complete the download if and only if both portions are received in their entirety. Let 'Yl••st. (t) be the probability 
that every node has completed the download by time t: 

'Y1stst. (t) = ~min (t, n, ( 2 _
1U:: ~ p

2
)) k, (1- Pl)) ~min (t, n, ( 2 _

1U:: ~ p
2
)) k, (1- P2)) (35) 
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The second strategy codes across the entire file but transmits the same coded packet on both links. In this case, a receiver 
obtains a new degree of freedom if it receives at least one of the two packets transmitted at that time. In other words, the 
strategy has effectively reduced the packet erasure probability to pJ.P2 but the transmission rate has not changed. As a result, 
the completion probability for this strategy is: 

'Y
2
ndst. (t) = f3min(t, n, k, (1 - PtP2)) (36) 

If we use SMART, whereby we code across the entire file and send independently coded packets across each link, a receiver 
will complete. the download if it has successfully received k or more dofs from either of the links. Thus: 

'YsMART(t) - f3min (2t,n,k,(l-Pl;P2
)) (37) 

Recall that -y(t) is a measure of how close we are to completing the download. It can be shown that: 

'Y1otst. (t) < 'YsMART(t) Vt > k (38) 

'Y2!'ctst. (t) < 'YSMART(t ) \;ft > k (39) 

proving the superior performance of SMART. The following figure plots the -y(t) for all three strategies for a network with 
of n = 1000 nodes with a file of k = 100 packets, and packet erasure probabilities (PitP2) = (0.1, 0.3). The plot confirms 
two well known criteria for transmission across heterogeneous networks, first is to code across the entire file and second to 
avoid correlation at the tranc:mittP.rc: 
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Ftgure 4: Depiction of -y(t) for different strategies 
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